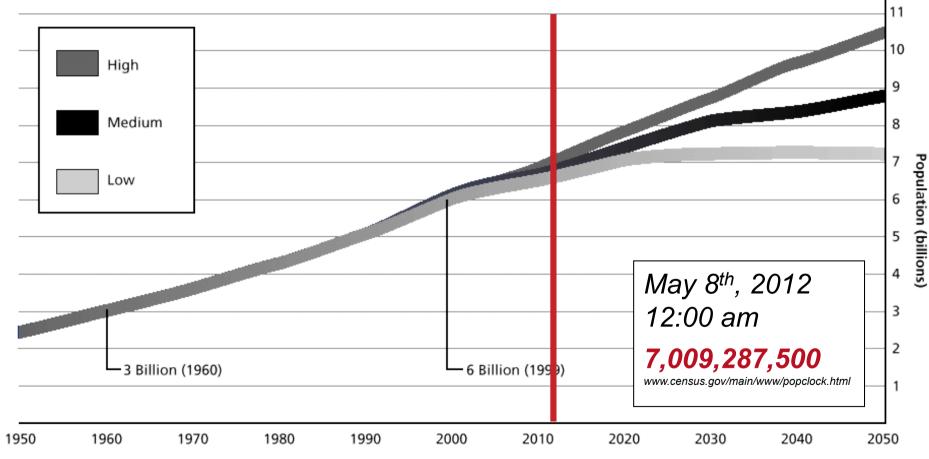


SEMIZENTRAL Germany

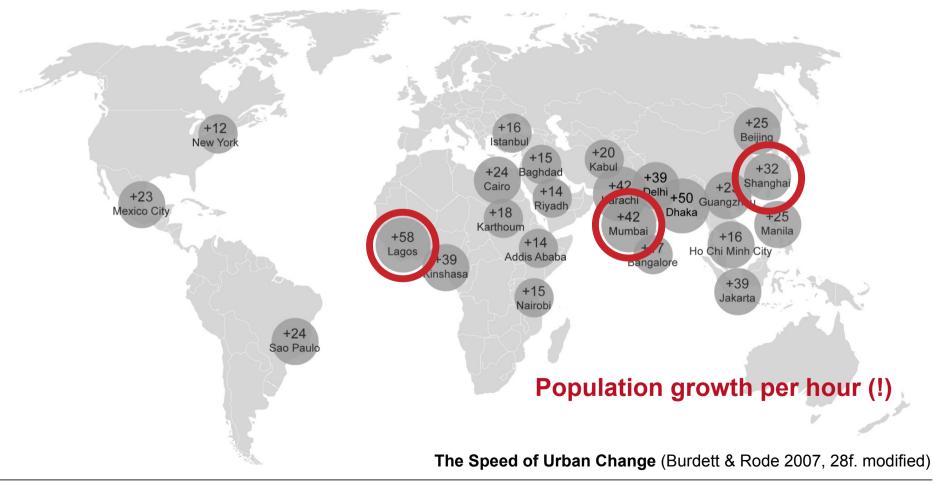
Integrated water infrastructure for megacities – needs and strategies for a sustainable development


Dr.-Ing. Susanne Bieker, Prof. Dr.-Ing. Peter Cornel Wastewater Technology and Spatial Planning Technische Universität Darmstadt, Germany Institute

Challenge I: World Population Growth

Actual and Projected

Source: United Nations. 1998. World Population Prospects (The 1998 Revision).


TU Darmstadt, Germany | Sustainable Development of Megacities, IFAT, May 2012 | Dr.-Ing. Susanne Bieker | 2

Challenge II: Urban Growth (Capita/hr)

In total around 1 Million per week in cities

Growth rates e.g. Shanghai

Population growth: $32 \text{ C/h} \rightarrow$ 280,320 C/y

Additional water: $132 L/(C \cdot d) \rightarrow 36,442 m^{3}/d$

Additional solid waste: $1 \text{ kg/(C·d)} \rightarrow$ 280 Mg/d

Challenges III: Limited resources

Scarcity on resources

Water

- Population Growth
- Increasing living standards
 - Higher personal water consumption
 - Increasing meat consumption \rightarrow higher water consumption in agriculture per person

Energy

- Energy and Water are linked
 - Fuel Abstraction, Power Production, Cooling
 - Energy for extracting, treating and distributing water
 - Energy for (domestic) water heating

Nutrients

- Nitrogen, unlimited but energy intensive
- Phosphorus, a limited resource

We have to answer the Question

Can a system that was evolved

- more than 100 years ago
- for global population < 2 billion</p>
- mostly rural
- Iacking modern technology

be the solution when

- global population is > 7 (8) billion
- mostly urban
- experiencing resource constraints

Adapted from IWA-President Daigger, G.; Change in Paradigm: Waste to Resource, Weftec '10; New Orleans

??

Further Questions

Can we effort <u>not</u> to re-use limited resources ?

- Water
- Energy
- Phosphorus
-

What does it really cost to do nothing ?

- Dramatically decreasing ground water tables by overexploitation
- Pollution of rivers
 - water born diseases
 - endangering potable water supply and agricultural irrigation

• ...

- running out of fertilizer
- climate change

Infrastructure Needs

What do we need to ensure with new infrastructure-systems?

Adaptability

A "growing" system for growing cities

Flexibility

• A system being able to react to changes in development-reality

Resource-efficiency

 All-in-all amounts of resources needs in urban areas (with high population densities) exceed the natural resources

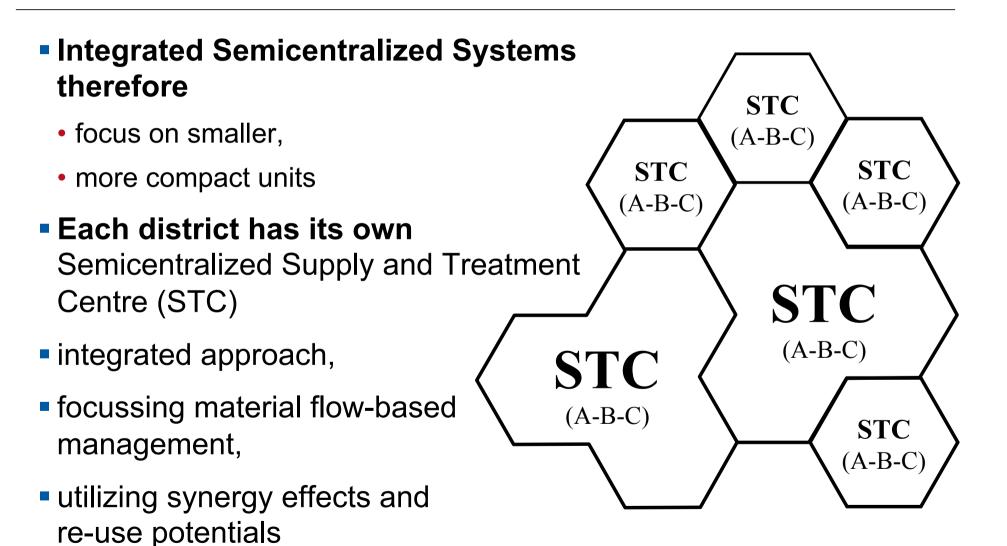
A matter of scale...

- Water reuse fosters small(er) units
 - minimizing investment cost for sewer and pipe systems
 - minimizing energy demand for pumping
 - minimizing water losses
- Energy recovery fosters small(er) units
 - e.g. heat recovery from greywater (showers, laundry,...)
- High quality standards and professional operation foster minimum scales (to ensure low costs)

→ Combining Requirements in Semicentralized Scales (20,000 to 100,000 Capita for the boundary conditions of fast growing urban regions in China)

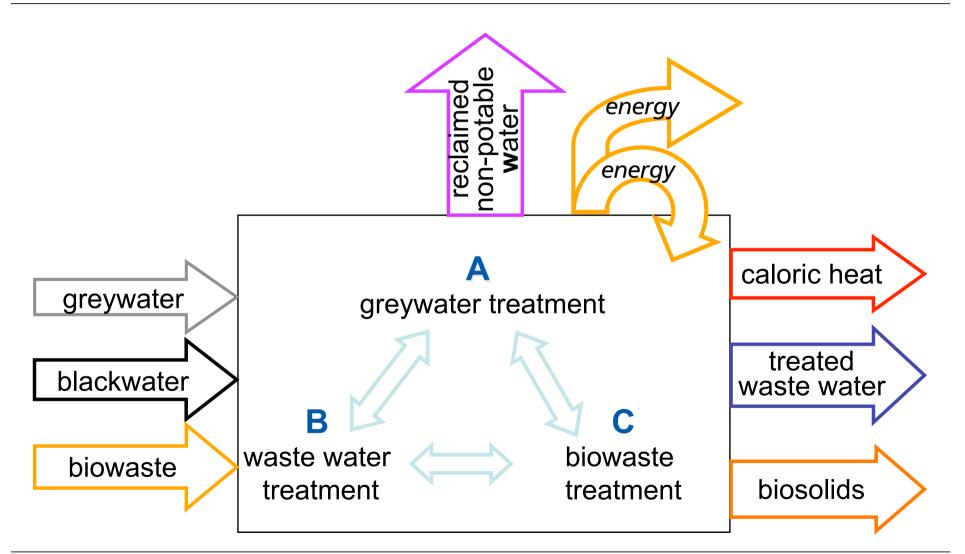
A matter of integration...

- Energy self-sufficiency fosters integrated treatment of waste water and (organic) waste
- Flexibility in planning needs harmonization of treatment and material flows
- Case-adapted solutions can only be reached within holistic and comprehensive approaches considering juridical, organizational and technical framework conditions as well as user interests and business environment


→ Combining requirements in integrated solutions, integrating

- spatial and departmental planning as well as
- different sectors of departmental planning (water supply, waste water treatment and waste treatment)

Integrated treatment on district level

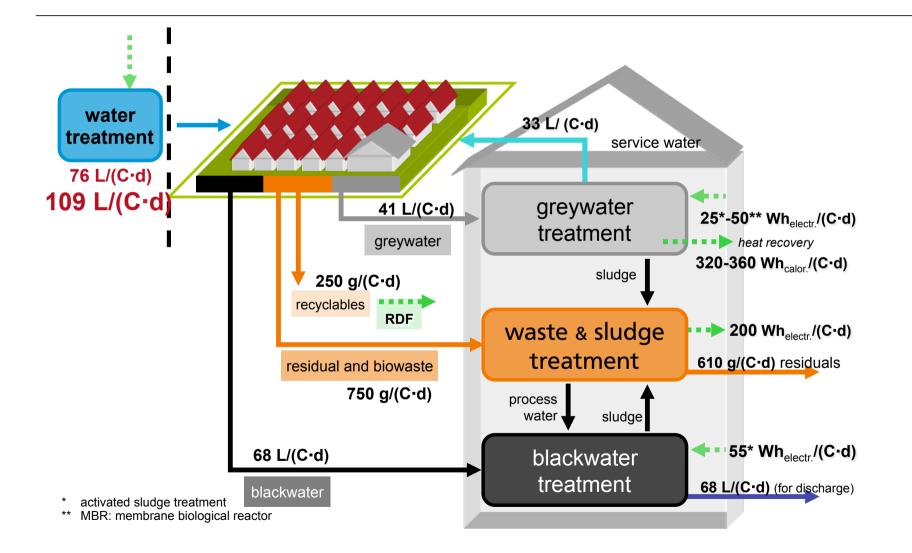


TU Darmstadt, Germany | Sustainable Development of Megacities, IFAT, May 2012 | Dr.-Ing. Susanne Bieker | 11

The Semizentral Approach

Case Study Qingdao, P.R. China

Case Study Qingdao, P.R. China


- Emerging Metropolis at the Coast of Shandong Province
 - Currently 3.4 million urban population overall 8.5 million
 - Urban Growth intention of over 5 million urban inhabitants till 2020
- Natural Water Resources limited
 - Not enough for "additional" citizens
 - Population growth needs more water
 - Qingdao solution: seawater desalination
 - Energy needs: 3 to 4 kWh/m³
- "Semizentral" solution: saving 30% of fresh water demand by intra-urban reuse
 - Energy needs: 0.3 to 0.5 kWh/m³

Energy and Material Flows - The Qingdao Case

Potentials of the "Semizentral" approach

Separated greywater treatment

Reduced fresh water demand

- Saving natural resources and biospheres
- Reducing waste water amounts
- Saving energy and costs
- Secured and controlled waste and sludge treatment

Gaining biogas by anaerobic treatment

- Energy self-sufficient operation of the STC consistent treatment independent from eternal energy sources and settings
- Reduced greenhouse-gas emissions at landfills

Reduced and stabilized amounts of waste and sludge

- Reduced transportation capacities
- Reduced environmental impacts by "alternative" dumping

Potentials of the "Semizentral" approach

Higher planning safety of investments

- Short times frames of planning and realization
 - Reduced costs
 - Higher reliability of implementation (proximity of time between planning and realization)
- Short time frames of full-usage of facilities
 - short-term redemption/ recovery of investments

Flexibility in infrastructure development

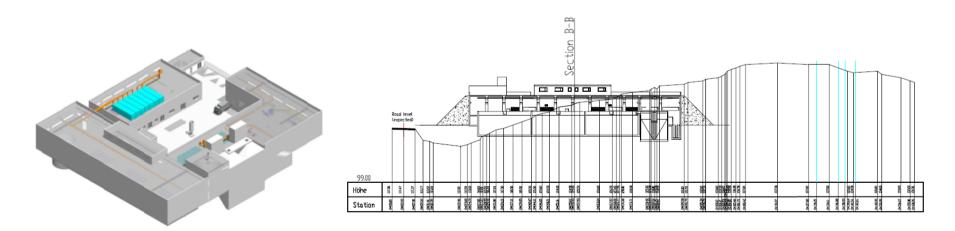
- Adapted to actual (not prognosted!) rural and urban development
 - Reduced starting-investments
 - Minimized investments overall investing only in shortly needed infrastructure modules
- Adapted to boundary conditions
 - Adaptable to different techniques and quality needs
 - Stepwise extension and upgrade

The next steps – from research to implementation

- After 8 years of research in the different fields of
 - water reuse, recontamination and disinfection,
 - membrane technology,
 - integrated biowaste and sludge treatment,
 - implementation strategies,
 - integrated operation,
 - ...

the SEMIZENTRAL approach will be realized.

The next steps – from research to implementation



City of Qingdao:

Host of the World Horticulture Exposition (WHE) in 2014

Semicentralized Supply and Treatment System comprises

- new development areas around the expo-site of about 6,000 Capita
- 2 Hotels with > 1,000 Capita
- the "WHE-Village" with about 4,800 Capita

The next steps – from research to implementation

Integrated water infrastructure for megacities – needs and strategies for a sustainable development

Presented by

Dr.-Ing. Susanne Bieker

Wastewater Technology and Spatial Planning Technische Universität Darmstadt, Germany Institute WAR

